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Abstract

The purpose of factor analysis is to “summarize the
interrelationships among the variables in a concise but
accurate manner as an aid in conceptualization” (Gorsuch,
1983, p. 2). Kerlinger (1979) described factor analysis as
“one of the most powerful methods yet for reducing variable
complexity to greater simplicity” (p. 180). The purpose of
the present paper is to explain the meaning and use of
three important factor analytic statistics: factor scores,
factor structure coefficients, and communality
coefficients. In addition, four methods of calculating

factor scores are discussed.
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FACTOR SCORES, STRUCTURE COEFFICIENTS, AND COMMUNALITY
COEFFICIENTS: IT’S ALL ONE GENERAL LINEAR MODEL

The purpose of factor analysis is to “summarize the
interrelationships among the variables in a concise but
accurate manner as an aid in conceptualization” (Gorsuch,
1983, p. 2). In attempting to find discrete yet meaningful
insights about data (Horst, 1965), this summary should
include the maximum amount of information from the original
measured variables in as few latent or synthetic variables
or factors as possible, so as to keep the solution
parsimonious (Hetzel, 1996). Kerlinger (1979) described
factor analysis as “one of the most powerful methods yet
for reducing variable complexity to greater simplicity” (p.
180). Cattell (1978) wrote that factor analysis is “the
furthest logical development and reigning queen of the
correlation methods” (p. 4).

Simply, factor analysis, Jjust like all other GLM
analyses, looks at the relationship between measured
variables and latent variables. However, some misuses and
misconceptions about factor analysis can be attributed to
the confusing language surrounding the method. As Pedhazur
and Schmelkin (1991) wrote:

Perusing even small segments of this [factor analysis]

literature in an effort to understand what FA [factor
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analysis] is, how it is applied, and how the results
are interpreted is bound to bewilder and frustrate
most readers. This is due to a wide variety of
contrasting and contradictory views on almost every
aspect of FA, serious misconceptions surrounding it,
and lack of uniformity in terminology énd notation.
(p. 590)

Garbarino (1996) also commented on the confusing language

used to describe various parametric statistics:
For example, we call the same systems of weights
“equations” in regression, “factors” in factor
analysis, “functions” or “rules” in discriminant
analysis, and “functions” in canonical correlational
analysis. We call the weights themselves “beta”
weights in regression, “pattern coefficients” in
factor analysis, and “standardized function
coefficients” in discriminant analysis or canonical
correlation analysis. The synthetic scores are called
“yhat” in regression, “discriminant scores” in
discriminant analysis, and “canonical function (or
variate) scores” in canonical correlation analysis.
(p. 3)

Thompson (1992) noted that various statistical concepts

from different analyses (e.g., factor analysis, regression,

ERIC d
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canonical correlation analysis) “..are all analogous, but
are given different names in different analyses.mainly to
obfuscate the commonalities of [all] parametric methods,
and to confuse graduate students” (pp. 906-907). Further,
terms like “loadings” have been used ambiguously in
referring to both factor structure and pattern coefficients
(Thompson & Daniel, 1996).

The purpose of the present paper is to explain the
meaning and use of three important factor analytic
statistics: factor scores, factor structure coefficients,
and communality coefficients. In making sense of factor
analytic results, one must correctly identify and interpret
these three sets of statistics (Wells, 1999). Actually,
these results occur throughout analyses within the general
linear model (Thompson, 2000), but are arbitrarily given
different names. Despite the obvious importance of these
parameters a number of articles have failed to interpret,
as well as neglect to even report statistics like factor
structure coefficients (Thompson, 1997).

Various ways of estimating factor scores will be
compared and contrasted, including new non-centered
estimation methods (Thompson, 1993). The paper will also
illustrate that structure coefficients are bivariate

correlation coefficients between the measured variables in

6
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GENERAL LINEAR MODEL 6

the factor analysis with the factor scores yielded in the
analysis (McMurray, 1987). Finally, communality
coefficients (h?) will be expressed as the R? between the
factor scores on all the factors in a given solution with
the scores on a given measured variable (Wells, 1999).
Heuristic Data

In providing a general overview of the computations
and interpretations, as well as a step by step discussion
of factor analysis, the Holzinger and Swineford (1939) data
set will be used. For heuristic purposes, a portion of the
original 301 student observations on 25 measured variables
will be analyzed and present in a graphical format to
assist in providing a concrete understanding of factor
scores, communality coefficients, and factor structure
coefficients. More specifically, a factor analysis using
(a) cubes, simplification of Brigham’s spatial relations
test; (b) paper form board; (c) lozenges from Thorndike;
(d) paragraph completion test; (e) word meaning test; (f)
speeded addition test; (g) speeded code test; (h) speeded
counting of dots; (i) memory of target words; (j) memory of
target numbers; (k) memory of target shapes on all 301
junior high students was performed.

A factor analysis was completed and five factors were

extracted. Although other types of factor extraction can be

ERIC 7
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used, this paper applied principal components analysis,
which always maintains (unlike other extraction
methods)exactly the same correlations among the factor
scores as well as between the factors. Factor analysis is
just like all other General Linear Model statistics in that
it is correlational (Thompson, 1991). Therefore, just like
vyhat scores in regression, factor scores are estimates of
the latent constructs of primary interest to researchers.

To get factor scores, pattern coefficients, and
structure coefficients we must first start with our raw
data matrix. As can be seen in Table 1, gaining
understandable information from a raw data matrix is
virtually impossible. The same is true as regards the Table
2 z-score form of the data; Table 3 presents the variable
labels. In fact, one important goal of factor analysis is
finding and understanding existing relationships between
observed variables as well as latent variables.

Therefore, rather than run analysis on the raw data
matrix or the z score matrix, which may contain “random or
unreliable information” (Horst, 1965, p. 469), factor
analysis begins with an association matrix (e.g.,
correlgtion matrix, covariance matrix). Instead of using
some other association matrix, the present factor analysis

used a correlation matrix of the measured variables, which

8
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is special case of a variance-covariance matrix (Fan,
1996). Not only does the correlation matrix attempt to
simplify the data, it also suggests existing relationships
between measured variables.

In this paper, we will be especially interested in two
Pearson correlation matrices. The Pearson correlation
matrix of the measured variables presented in Table 4 1is
called “symmetric” because the number of columns and rows
are equal. Table 5 presents the factor pattern coefficients
“extracted” (Hetzel, 1956) from the Table 4 correlation
matrix; the factor pattern coefficients are mathematically
analogous to the beta weights derived in regression
analysis. Table 6 presents the factor correlation
coefficients.

The factor structure coefficients (unlike the pattern
coefficients) are always correlation coefficients, as we
shall see momentarily. Factor analysis structure
coefficients are directly analogous to the structure
coefficients derived throughout the general linear model,
including regression (Thompson & Borrello, 1985) and
canonical correlation analysis {(Thompson, 2000).

In matrix algebra a matrix that when multiplied times
another matrix yields that other matrix is called an

“identity” matrix (i.e., the “identity matrix” is the

9
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matrix algebra equivalent to the number “1” in regular
algebra). An identity matrix has 1’s on the diagonal and
0’s everywhere off the diagonal. Thus, the Table 6 factor
correlation coefficients constitute an identity matrix.
Because the factor structure coefficient matrix (Sy,r)
equals the factor pattern coefficient matrix (P,r) times

the factor correlation matrix (R/AF), and in present case
Rgr = Igr, here Syr equals Pu,r. This is why the numbers in
Tables 5 and 7 are the same. Thus, the two matrices might
have been presented as a single matrix, and labeled the
“pattern/structure matrix.”
Factor Scores

Wells (1999) pointed out that a number of people

confuse factor scores with factors. Remember, a factor

w

score matrix has “n” rows (one for every individual), while
a factor matrix has “v” rows (as in a pattern/structure
coefficient matrix). To understand the utility of factor
scores we must first realize that factors are conceptual
entities or latent variables. While factors provide the
researcher with general information, the factor scores are
detailed representations that attempt to help us understand
these often confusing constructs.

Again, factor scores are similar to yhat scores in

regression. In regression, the yhat scores provided a
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linear combination of an individual’s score on a measured

variablé (Kachigan, 1982). Likewise, factor scores are

weighted combinations of scores on a series of measured
variables. A set of factor scores exists for every person
on every component of a factor. Rather than being derived
linearly, matrix algebra is used to estimate approximations
of each individual’s factor scores. Four possible methods

(Gabarino, 1996; McDonald & Burr, 1967; Wells, 1999)

calculate factor scores:

1. The Regression Method, which is available in SPSS,
determines factor scores by multiplying the standardized
score matrix by the inverse of the variable correlation
matrix. Any matrix multiplied by an inverse matrix is
actually dividing out or removing the presence of the
inverse matrix. Therefore, the relationship between the
variables is removed. Table 8 presents these factor
scores for the present example.

Fyy = ZNxV RV iy

2. The Bartlett Method (also available in SPSS)uses least

squares procedures to minimize the sum of squares of the

unique factors over the range of variables (Bartlett,

1937). Because the sum of squares of the unique factors are

minimized, non-common factors are used only to explain the
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discrepancies between observed scores and those reproduced
from the common factors. This method eventually leads to
high correlation between factor scores and factors being
estimated and ensures that the factor scores are the
unbiased estimates.
3. The Anderson-Rubin Method (Anderson & Rubin, 1956) (also
available in SPSS) is similar to the Bartlett Method with
an added condition requiring that factor scores must be
orthogonal. The resulting equation is more complex and
produces factor estimates whose correlations form an
identity matrix. These estimates are neither “univocal” nor
unbiased but do have reasonably high correlations with the
factors.
4. The Thompson Method (Thompson, 1993)could easily be
performed with SPSS using syntax creates factor scores that
are not generated in z score form. Although, the standard
deviation of the standardized factor scores is 1, as in z
score based formulas, the means of the measured variables
are added back into the factor scores (making them “non-
centered”). Therefore, researchers can compare the mean
factor scores across factors within a given analysis.
Basically, this method requires that the researcher convért
variables into standardized form, add original variable

means back onto the standardized estimates, and finally,
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obtain factor scores by multiplying these non-centered but
standardized values by the weight matrix (Wwr= PR i)
(WiiF= Py RV v ) * 2y = Fper
Factor Structure Coefficients
If the researcher wants to know the importance of a
variable to a specific factor in the presence of the other
variables the factor pattern coefficients or weights must
be consulted (especially if factors were correlated, as in
an oblique rotation). However, if we are interested in the
bivariate relationship between a measured variable and
specific latent variable, we look at structure coefficients
(Thompson, 1997). Not only are structure coefficients
essential in the interpretation of univariate statistics
(e.g., multiple regression), interpretation of multivariate
statistics often calls for separate assessment of structure
coefficients apart from weights (Thompson, 1992). Because
the five factors discerned in thiélpaper were extracted
using principal components analysis and a v&rimax rotation,
the extracted factors are orthogonal (i.e., uncorrelated).
Wells (1999) pointed out that factors are “always perfectly
uncorrelated upon initial extraction, and remain
uncorrelated if an ‘orthogonal’ rotation is used” (p. 126).
The fifth factor was extracted for comparative

purposes and would not normally be extracted due to the
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failure to met extraction criteria (e.g., scree plot test,
eigenvalue test). In this factor analysis, the structure
coefficients have the same value as the pattern
coefficients. Better yet, the rotated pattern coefficient
matrix and factor structure coefficient matrices are equal
because the factor correlation matrix is an identity
matrix.

In the case of factor analysis, we are interested in
the relationship of specific measured variables with
specific factors or latent constructs (Gabarino, 1996). For
example, the measured variable t2 has a factor structure
coefficient of (.883) with Factor 4. Because structure
coefficients are a “score world” statistic we must “square
to compare”. Therefore, the squared structure coefficient,
or the estimate of the bivariate relationship between t2
and Factor 4 can be expressed the “area world” form as .780
(.883 x .883 = .780). Squared structure coefficients
provide us additional methods of interpretations that are
very useful to factor analysis: (1) Eigenvalués; (2)
Communality coefficients. While a discussion on eigenvalues
might be beneficial, it is beyond the scope of this paper.
However, Stevens (1996) provides an effective treatment of

the topic.
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Communality Coefficients (h?)

Whereas structure coefficients look at bivariate
relationships between measured variables and a single
factor, communality coefficients look at or estimate
variance accounted for between one measured variable across
all the factors. Communality coefficients are best
described as each variable’s variance that has been
reproduced by the extracted factors (Gorsuch, 1985).

The communality coefficient is the sum of squared
structure coefficients across all extracted factors. For
example, if communality of variable t2 were 1.00 or 100%,
we could entertain the idea that all of the variance in t2
was accounted for by the factors or all of the variance in
t2 was useful in identifying the factors. Communality
coefficients can only be positive or zero values, because
these estimates are dealing with squared numbers. McMurray
(1987) pointed out that communality coefficients can be
considered the multiple correlation coefficients in factor
analysis.

This is best seen in each of the variable’s multiple R
squared. In this writing, a regression with each of the
variables being the dependent measure and the factor scores
being the predictors was performed. Each R squared value is

equal to the variable’s communality coefficient; see Table

15
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9. It is taking into account all of the predictors’
influence or accounting for the variance of the factor
scores. Essentially, factors are reproducing the reliable
or usable variance/information from each measured variable.
Further, if we sum all of the communality coefficients and
divide by the number of variables, we see the total
proportion of variance accounted for by all five factors
equals 72.158.

In addition, communalities are also termed as the
proportion of variance that was useful in identifying or
delineating the factors (Gorsuch, 1983). Communality
coefficients are also lower-bound estimates of reliability.
In principal components analysis (used in this paper) the
initial reliability estimate of each variable is considered
perfect or 100% reliable. Obviously, it is highly unlikely
that all the measured variables will actually be found to
be completely reliable. Therefore, other types of factor
extraction do not assume perfect reliability.

Conclusion
In our present study of the eleven measured variables
from the 301 Holizinger (1939) students the interpretable
results would be (1) five extracted factors and 301 factor
scores for each of the factors; (2) 55 structure

coefficients would exist, one for each measured variable

16
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and its relationship with each of the extracted factors,
and (3) 11 communality coefficients could be determined,
one for each measured variable. As in other GLM procedures,
the combined evaluation of factor scores, structure
coefficients, pattern coefficients, and communality
coefficients enables the researcher to more accurately

formulate interpretations based on the results.

17
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Table 1: Raw Data Matrix

Variable
Case T2 T3 T4 T6 TS T10 T11 T12 T14 T15 T16
1 31 12 3 7 9 78 74 115 170 86 96
2 21 12 17 5 9 87 84 125 184 85 100
3 21 12 15 3 3 75 49 78 170 85 95
4 31 16 24 8 17 69 65 106 181 80 91
5 19 12 7 8 18 85 63 126 187 99 104
6 20 18 11 3 6 100 92 133 164 84 104
7 24 12 8 10 20 108 65 124 121 71 78
8 25 13 15 11 9 78 80 103 184 95 106
9 23 11 12 8 19 104 52 93 184 91 105
10 21 6 10 8 18 95 74 91 175 92 100
11 23 13 16 6 11 86 60 114 173 86 107
12 24 15 23 8 18 85 71 103 167 103 108
13 18 15 33 8 16 135 68 104 166 92 103
14 22 16 14 14 11 118 68 94 186 86 102
15 23 13 29 15 21 92 64 87 168 84 102
17 19 18 12 6 9 85 58 133 164 84 100
18 27 17 18 6 12 92 61 105 149 88 98
19 21 14 32 13 26 90 94 97 171 74 107
20 35 13 24 11 18 80 62 107 186 99 105
21 32 17 16 5 4 60 44 92 169 96 96
22 34 16 33 6 15 103 73 109 169 94 105
23 25 16 15 10 22 80 62 92 166 83 101
24 22 15 13 8 7 134 64 106 173 96 99
25 22 12 10 7 9 108 60 92 154 92 106




GENERAL LINEAR MODEL 22

Table 2: Standard Score Matrix (13 cases)

Variable

Casa =zt2 zt3 zt4 zt6 zt9 zt10 ztll =ztl2 =ztl4 ztl5 =ztlé6

1 1.41 -.79 -1.66 ~-.62 ~-.82 ~-.73 .31 .22 -.45 -.52 -.015
2 -.72 -.7¢ -.11 -1.20 ~-.82 -.37 .95 .7 =77 -.65 -.33
3 -.71 -.79 -.33 -1.77 -1.60 -.85 -1.29 -1.61 -.45 -.65 -.99

[\S}
N>
wv
[y
|
—
N
N}

4 1.41 .63 .66 -.34 .22 1.09 -.27 -.Z. -1.51

5 -1 .14 -7 .9 -1.22 -.34 -.45 -.39 .76 1.03 1.16 .19
6 -.9%2 -1.14 .00 -1.77 -1.21 .15 1'46. 1.1y -.97 -.78 .18
7 -.07 -.7% -1.10 .23 .61 .47 =27 .66 -4.70 -2.46 -3.21
8 .14 -.43 -.33 .52 -.82 -.73 .69 ~-.37 77 .65 .46

9 -.29 -1.14 -.606 -.34 48 .31 -1.10 -.87 17 .13 .33

11 -.29 -.43 -.22 -.91 -.56 -.41 -.58 17 -.19 -.52 .59
12 -.07 .27 .55 -.34 .48 -.45 .12 -.37 -.711 .68 .72

13 -1.35 .27 1.66 -.34 .09 1.55 -.07 -.32 -.79 .26 .06

23
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Table 3: Variable Labels

Variable Labels

t2 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS TEST

t3 PAPER FORM BOARD-SHAPES THAT CAN BE COMBINED TO FORM A
TARGET

t4 LOZENGES FROM THORNDIKE-SHAPES FLIPPED OVER THEN
IDENITIFY TARGET

t6 PARAGRAPH COMPREHENSION TEST

t9 WORD MEANING TEST

t10 SPEEDED ADDITION TEST

tll SPEEDED CODE TEST

tl2 SPEEDED COUNTING OF DOTS

tl4 MEMORY OF TARGET WORDS

tl5 MEMORY OF TARGET NUMBERS

tl6 MEMORY OF TARGET SHAPES

24
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Table 4:
Correlation Matrix

Variable t2 t£3 t4 te t£9 £10 £11
t2 1.000
t3 0.238 1.000
t4 0.340 0.305 1.000
t6 0.153 0.212 0.159 1.000
t9 0.193 0.239 0.198 0.704 1.000
tl0 -0.076 0.040 0.072 0.174 0.121 1.000
tll 0.108 0.126 0.199% 0.342 0.290 0.447 1.000
tl2 0.092 0.177 0.186 0.107 0.150 0.487 0.398
tl4 0.068 0.073 0.128 0.222 0.172 0.093 0.225
tls 0.085 0.036 0.212 0.069 0.052 0.109 0.140
tl6 0.236 0.184 0.305 0.241 0.253 0.117 0.305

29




GENERAL LINEAR MODEL 25

Table 5: Rotated pattern
and structure matrix ext=p.c.a./rotation=varimax)

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

t2 -0.042 0.131 0.007 0.883 0.001
t3 0.055 0.164 0.033 0.149 0.933
t4 0.149 0.023 0.219 0.632 0.355 )
t6 0.117 0.897 0.111 0.047 0.071
ts 0.093 0.897 0.06 0.126 0.119
t10 0.838 0.065 0.075 -0.139 -0.016
tll 0.677 0.327 0.207 0.138 -0.076
t12 0.807 -0.022 -0.025 0.135 0.181
tl4 0.015 0.193 0.797 -0.072 0.019
tl5 0.072 -0.106 0.792 0.077 0.02
t1lé 0.139 0.2 0.623 0.344 0.054

26
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Table 6: factor score (created using Regression)
correlation matrix

FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORES

FSCORE1 1.00 0.00 0.00 0.00 0.00
FSCORE2 0.00 1.00 0.00 0.00 0.00
FSCORE3 0.00 0.00 1.00 0.00 0.00
FSCORE4 0.00 0.00 0.00 1.00 0.00
FSCORES 0.00 0.00 0.00 0.00 1.00
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Table 7
Structure
coefficients

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

t2 -0.042 0.131 0.007 0.883 0.001
t3 0.055 0.164 0.033 0.149 0.933
t4 0.149 0.023 0.21¢9 0.632 0.355
té 0.117 0.897 0.111 0.047 0.071
t9 0.093 0.897 0.06 0.126 0.11¢9
tlo0 0.838 0.065 0.075 -0.13¢ -0.016
tll 0.677 0.327 0.207 0.139 -0.076
tl2 0.807 -0.022 -0.025 0.135 0.181
tl4 0.015 0.193 0.797 -0.072 0.01¢9
t1l5 0.072 -0.106 0.792 0.077 0.02
tle 0.139 0.2 0.623 0.344 0.054
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Table 8:
Communality
coefficients

Variables Communality Rsquared

t2 0.798 0.798
t3 0.924 0.924
t4 0.596 0.596
te 0.839 0.839
t9 0.814 0.814
t10 0.732 0.732
tl1 0.633 0.633
tl2 0.704 0.704
tl4 0.679 0.679
t1l5 0.649 0.649
tlé 0.568 0.568
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Table 9: Abbreviated list of 25 individuals’ factor scores

Case FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORES
1 -.09121 -.44487 -.90708 .67799 -1.39301
2 .61821 -.88595 .10662 -.35552 -.60147
3 -1.27638 -1.528936 -.42944 -.47816 -.38047
4 -.80970 .11520 -1.01208 1.06929 .54899
5 -.05228 -.089570 1.17991 -1.33814 -.48943
6 1.46515 -1.48908 -.61697 .06798 -.98865
7 .88869 .60172 -4.77585 .00761 -.75787
8 -.34209 .00025 .94162 .04480 -.70099
9 -.66314 .18922 .63056 -.55803 -1.03886

10 -.30151 .32486 .18245 -.90708 -1.64946

11 -.18213 -.72998 -.07943 .04028 -.23886

12 -.33370 -.22387 .76709 .39468 .30503

13 .75589 -.47021 -.00926 -.44059 .86327

14 -.11508 . 68688 .29098 -1.11849 .50387

15 -.72251 1.37653 -.62559 .27270 -.25045

16 -.88177 -.46100 -.16702 -.93657 -.09645

17 .23063 -1.00112 -.82091 -1.00163 1.78356

18 -.18653 -.82008 -1.46503 .67876 .91364

19 .12848 1.72671 -.81890 .35857 -.09471

20 -.78864 .26088 .88273 1.86228 -.80601

21 -1.62734 -1.54124 -.14411 1.07094 .87014

22 .17007 -.81524 -.07318 2.30952 .33252

23 -.92434 .82994 -.83307 -.00363 .48972

24 .59265 -.90309 .27003 -.92394 .32785

25 -.12663 -.72006 -.43979 -.27037 -.83780
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SYNTAX REFERENCE

SET BLANKS=SYSMIS UNDEFINED=WARN PRINTBACK=LISTING.
DATA LIST

FILE='c:\WINDOWS\Desktop\New Folder\holzinger.dta’ FIXED
RECORDS=2 TABLE /1

Id 1-3 sex 4-4 ageyr 6-7 agemo 8-9 tl1 11-12 t2 14-15 t3 17-18 t4
20-21 t5 23-24 t6 26-27 t7 29-30 t8 32-33 t9 35-36 t10 38-40 tll 42-44
t12 46-48 t13 50-52 tl1l4 54-56 tl15 58-60 t1l6 62-64 tl7 66-67 t18 69-70
t19 72-73 t20 74-76 t21 78-79 /2 t22 11-12 t23 14-15 t24 17-18 t25 20-
21 t26 23-24
EXECUTE.
COMPUTE SCHOOL=1.
IF (id GT 200) SCHOOL=2.
IF (id GE 1 AND id LE 85) GRADE=7.
IF (id GE 86 AND id LE 168) GRADE=8.
IF (id GE 201 AND id LE 281)GRADE=7.
IF (id GE 282 AND id LE 351)GRADE=8.
IF (id GE 1 AND id LE 44)TRACK=2.
IF (id GE 45 AND id LE 85)TRACK=1.
IF (id GE 86 AND id LE 129)TRACK=2.
IF (id GE 130) TRACK=l.
PRINT FORMATS SCHOOL TO TRACK(F1.0).
VALUE LABLES SCHOOL (1) PASTEUR (2)GRANT-WHITE/TRACK (1) JUNE PROMTIONS(2)
FEB PROMOTIONS/.
VARIABLE LABELS t1 VISUAL PERCEPTION TEST FROM SPEARMAN VPT, PART III
t2 CUBES, SIMPLIFICATION OF BRIGHAM’S SPATIAL RELATIONS
t3 PAPER FORM BORAD-SHAPES THAT CAN BE COMBINED TO FORM
t4 LOZENGES FROM THORNDIKE-SHAPES FLIPPED OVER THEN IDENT
t5 GENERAL INFORMATION VERBAL TEST
t6 PARAGRAPH COMPREHENSION TEST
t7 SENTENCE COMPLETION TEST
t8 WORD CLASSIFICATION-WORD THAT DOES NOT BELONG
t9 WORD MEANING TEST
t10 SPEEDED ADDITION
tll SPEEDED CODE TEST
tl2 SPEEDED COUNTING OF DOTS
t13 SPEEDED DISCRIM STRAIGHT AND CURVE
tl4 MEMORY OF TARGET WORDS
t15 MEMORY OF TARGET NUMBERS
t16 MEMORY OF TARGET SHAPES
t17 MEMORY OF OBJECT-NUMBER ASSOCIATION
t18 MEMORY OF NUMBER-OBJECT ASSOCIATION
t19 MEMORY OF FIGURE-WORD ASSOCIATION
t20 DEDUCTIVE MATH ABILITY
t21 MATH NUMBER PUZZLES
t22 MATH WORD PROBLEM
t23 COMPLETION OF A MATH NUMBER SERIES
t24 WOODY-MCCALL MIXED MATH FUND
t25 REVISION OF T3-PAPER FORM
t26 FLAGS-POSSIBLE SUBSTITUTE FOR T4 LOZENGES
SUBTITLE ‘FACTOR 11 VARIABLES INTO FACTORS***’ .
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FACTOR VARIABLES=t2 t3 t4 t6 t9 tl1l0 tll tl1l2 t14 t15
t16/PRINT=ALL/PLOT=EIGEN/CRITERIA=FACTORS (5) /EXTRACTION=PC/ROTATION=VAR
IMAX/SAVE=REG (ALL FSCORE) .

LIST VARIABLES=FSCORE1l FSCORE2 FSCORE3 FSCORE({4
FSCORES5/CASES=25/FORMAT=NUMBERED.

Subtitle 'la. Factor scores BARTLETT method****'.

FACTOR VARIABLES=t2 t3 t4 t6 t9 t10 tl1l1l tl12 tl1l4 t15
t16/CRITERIA=FACTORS (5)/EXTRACTION=PC/ROTATION=VARIMAX/SAVE=BART (ALL
FSCOR) .

VARIABLE LABELS FSCORE1l 'SPEED bart'

FSCORE2 'MEMORY bart' FSCORE3 FSCORE4 FSCORES.

Subtitle 'lb. Factor scores Anderson-Rubin method****',

FACTOR VARIABLES=t2 t3 t4 t6 t9 tl1l0 tl1ll1 tl12 t14 t15
t16/CRITERIA=FACTORS (5) /EXTRACTION=PC/ROTATION=VARIMAX/SAVE=BART (ALL
FSCR) .

VARIABLE LABELS FSCR1 'SPEED ar'

FSCR2 'MEMORY ar' FSCR3 FSCR4 FSCR5.

Subtitle '2a. Compute z-score****',

DESCRIPTIVES VARIABLES=t2 t3 t4 t6 t9 t10 tll1l tl1l2 t14 tl1l5 tl6/save.
print formats zt2 zt3 zt4 zt6 zt9 ztl1l0 ztll ztl2 ztl4 ztlS zt1l6(F8.5)
List variables=zt2 zt3 zt4 zt6 zt9 ztl0 ztll ztl2 ztl4 ztlS
zt16/cases=25.

Subtitle '2b. Prove z-scores are z-scores***!',

DESCRIPTIVES VARIABLES=zt2 zt3 zt4 zt6 zt9 zt1l0 ztll ztl2 ztl4 ztl5
zt16.

Subtitle '2c. Compute regression factor scores hard way***'.
COMPUTE FSHARD1=(-.042*zt2)+ (.055
*zt3)+(.149*2t4)+(.117*zt6)+(.093*2t9)+
(.838*zt10)+(.677*zt11)+(.807*2zt12) +(.015*zt14)+(.072*2t15)+(.139 *
zt16) .

COMPUTE FSHARD2=(.131*zt2)+
(.164*zt3)+(.023*2zt4)+(.897*2t6)+(.897*zt9)+ (.065*zt10)+(.327
*zt11)+(-.022 *zt1l2) +(.193*zt14)+(-.106*zt15)+(.2* ztl6).

COMPUTE FSHARD3=(.007*zt2)+ (.033*zt3)+(.219

*zt4)+(.111*zt6)+ (.06*zt9)+ (.075*zt10)+(.207*zt1l)+(-.025%2zt12)
+(.797*zt14)+(.792 *zt15)+(.623*2zt16).

COMPUTE FSHARD4=(.883*zt2)+ (.149*zt3)+(.632*zt4)+(.047 *zt6)+(.126
*zt9)+ (-.139*zt10)+(.139 *ztll)+(.135 *ztl2) +(-
L072*zt14)+(.077*2zt15)+(.344*zt16).

COMPUTE FSHARDS5=(.001*zt2)+
(.933*2t3)+(.355*zt4)+(.071*zt6)+(.119*zt9)+ (-.016*zt10)+ (-
.076*zt11)+(.181*2t12) +(.019*zt14)+ (.02 *zt1l5)+(.054*2t16)
VARIABLE LABELS FSHARD1 'SPEED hard’

FSHARD2 'MEMORY hard' FSHARD3 FSHARD4 FSHARDS.

Subtitle '3a. Compute Thompson factor scores ***',

COMPUTE TT2=zt2+24.35 '

COMPUTE TT3=zt3+14.23.

COMPUTE TT4=zt4+18.00.

COMPUTE TT6=zt6+9.18.

COMPUTE TTS=zt9+15.30.

COMPUTE TT10=zt10+96.28

COMPUTE TT11=zt11+69.16.

COMPUTE TT12=ztl2+ 110.54.

COMPUTE TT14=zt14+175.15

COMPUTE TT15=zt15490.01 . BEST COPY AVAILARLE

COMPUTE TT16=2zt16+102.52.
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COMPUTE FSBT1=(-.042*zt2)+ (.055*zt3)+(.149*zt4)+(.117*2t6)+(.093*zt9)+
(.838*zt10)+(.677*2t11)+(.807*ztl2) +(.015*zt14)+(.072*zt15)+(.139 *
zt16) .
COMPUTE FSBT2=(.131*zt2)+ (.164*zt3)+(.023%zt4)+(.897*zt6)+(.897*zt9)+
(.065*2zt10)+(.327 *ztll)+(-.022 *ztl1l2) +(.193*zt14)+(-.106*zt15)+(.2*
zt16) .
COMPUTE FSBT3=(.007*zt2)+ (.033*zt3)+(.219 *zt4)+(.111*zt6)+(.06*zt9)+
(.075%zt10)+(.207*zt11)+(-.025%2zt12) +(.797*zt14)+(.792
*zt15)+(.623*2zt16). _
COMPUTE FSBT4=(.883*zt2)+ (.149*zt3)+(.632*zt4)+(.047*2zt6)+(.126 *zt9)+
(-.139*2zt10)+(.139 *ztl1ll1l)+(.135 *ztl2) +(-

.072*%zt14)+(.077*zt15) +(.344*zt16) .
COMPUTE FSBTS5=(.001*zt2)+ (.933*zt3)+(.355*zt4)+(.071*zt6)+(.119*zt9)+
(-.016*zt10)+(-.076*zt11)+(.181*2zt12) +(.019*zt14)+ (.02
*zt15)+(.054*2zt16)
VARIABLE LABELS FSBT1 'SPEED thompson'

FSBT2 'MEMORY thompson' FSBT3 FSBT4 FSBTS.
Subtitle '4. Show factor score relationship ***'.
LIST VARIABLES=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORES FSCR1l FSCR2
FSCR3 FSCR4 FSCRS5 FSHARD1 FSHARD2 FSHARD3 FSHARD4 FSHARDS

FSBT1 FSBT2 FSBT3 FSBT4 FSBTS5/CASES=25.
DESCRIPTIVES VARIABLES=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORES5 FSCR1
FSCR2 FSCR3 FSCR4 FSCRS5 FSHARD1 FSHARD2 FSHARD3 FSHARD4 FSHARDS

FSBT1 FSBT2 FSBT3 FSBT4 FSBTS
CORRELATIONS VARIABLES=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORE5S FSCR1
FSCR2 FSCR3 FSCR4 FSCRS5 FSHARD1 FSHARD2 FSHARD3 FSHARD4 FSHARDS

FSBT1 FSBT2 FSBT3 FSBT4 FSBTS
CORRELATION VARIABLES=t2 t3 t4 t6 t9 tl0 tl1ll t12 t14 t15 t16 WITH
FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORES
CORRELATION VARIABLES=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORES.
COMMENT ‘REGRESSION WITH EACH DEPENDENT VARIABLE BEING A DEP VAR WITH
THE OTHER DEP VARIABLES AND FSCORES BEING PREDICTOR VARIABLES'.
COMMENT ‘' MULTIPLE R-SQUARE IN REGRESSION EQUALS THE COMMUNALITY
COEFFICIENT FOR EACH MEASURED VARIABLE'.
Regression Variables=FSCOREl FSCORE2 FSCORE3 FSCORE4 FSCORES t2 t3 t4
t6 t9 t10 tl11 t12 t14 t15 tl6/dependent=t2/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORES.
Regression Variables=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 tl10 t1l1l t12 tl1l4 t15 tl6/dependent=t3/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORES.
Regression Variables=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORES5 t2 t3 t4
t6 t9 t10 tl1l1 t12 tl1l4 t15 tl6/dependent=t4/enter FSCORE1l FSCOREZ2
FSCORE3 FSCORE4 FSCORES.
Regression Variables=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 tl10 tl11 t12 tl1l4 t15 tl6/dependent=té/enter FSCORE1l FSCORE2Z
FSCORE3 FSCORE4 FSCORES.
Regression Variables=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORES t2 t3 t4
t6 t9 t10 tll1l t12 t14 t15 tl6/dependent=t9/enter FSCORE1l FSCORE2
FSCORE3 FSCORE4 FSCORES.
Regression Variables=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORE5 t2 t3 t4
t6 t9 t10 tl1l1l t12 tl14 t15 tlé6/dependent=t10/enter FSCORE1 FSCOREZ2
FSCORE3 FSCORE4 FSCORES.
Regression Variables=FSCOREl FSCORE2 FSCORE3 FSCORE4 FSCORES t2 t3 t4
t6 t9 t10 tl1l t12 t14 t15 tl6/dependent=tll/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORES.
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Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCCRE4 FSCORES5 t2 t3 td4
té t9 t10 t11 t12 t14 t15 tl6/dependent=tl2/enter FSCORE1l FSCORE2
FSCORE3 FSCORE4 FSCORES.

Regression Variables=FSCOREl FSCORE2 FSCORE3 FSCORE4 FSCORES t2 t3 t4
t6 t9 t10 t11 t12 t14 t15 tl6/dependent=14/enter FSCORE1 FSCORE2
FSCORE3 FSCORE4 FSCORES.

Regression Variables=FSCORE1l FSCORE2 FSCORE3 FSCORE4 FSCORES t2 t3 t4
té t9 t10 tl11 t12 t14 t15 tl6/dependent=15/enter FSCORE1l FSCORE2
FSCORE3 FSCORE4 FSCORES.

Regression Variables=FSCORE1 FSCORE2 FSCORE3 FSCORE4 FSCORES t2 t3 t4
t6 t9 t10 tl1ll1 t12 t14 t15 tl6/dependent=tl16/enter FSCORE1l FSCORE2
FSCORE3 FSCORE4 FSCORES.
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